
AD-Al1 874 FACTOR SCREENING IN SIMULATION: EVALUATION OF TNO i/i
STRATEGIES ON BASED ON..(U) DESMATICS INC STATE COLLEGE
PA C A MAURO ET AL. NOV 82 TR-ii3-7 NBBi4-79-C-0650

UNCLSSIFIED F/G 12/i N

smmmmmhmi
mhhhhhhhhmhmml



a L3M 1.2

L
11 - 5 1A

PICROCOPY RESOLUTION TEST CHART F

OF - .N - 193

Opp



00
1,.-.

rFACTOR SCREENING IN SIMULATION:
EVALUATION OF TWO STRATEGIES

BASED ON RANDOM BALANCE SAMPLING

by

Carl A. Mauro .

and
Dennis E. Smith

STATISTICS -

* - OPERATIONS RESEARCH-

-MATHEMATICS- DTICSELECTE
NOV .U

D

DESMATICS, INC.
:8 P.O. Box 618

State College, PA 16801

I .o-IMoN STATMNT A
ApimVWwpubzeh~gq 8 1 2 3

Distulbtl Unlimted29 (S4



P. 0. &Nx 616

DESMATICS, INC. Phone: (84238-621
oession For

NTIS GRA&I Applied Research in Statisics - Mathematics - Operations Research I
DTIC TAB0

Distribution/

SAvailability CodesAvail -and/ or -FACTOR SCREENING IN SIMULATION:
Dist Special EVALUATION OF TWO STRATEGIES

BASED ON RANDOM BALANCE SAMPLING

by

Carl1 A. Mauro
and

Dennis E. Smith

TECHNICAL REPORT NO. 113-7

November 1982

This study was supported by the Office of Naval Research
under Contract No. N00014-79-C-0650, Task No. NR 042-467

Reproduction in whole or in part is permitted
for any purpose of the United States Government

Approved for public release; distribution unlimited



TABLU OF CONTENTS

Page

PRILUMARY DISCUSSION . o . . . . . . . . . . . . . . . . . . . . . 32

RANDOM BALANCE SA14PLING v o e . o * o . * . 3

MODIFIED STRATEGY . . . . . . . . . . . . . . . . . . . . . . . 4

PERFORMANCE ASSESSMENT . . . . . . . . . . . . . . . . . . . . . . . 7

THE RB STRATEGY. 8

THlE RP STRATEGY e o o . o o o s o . a o o 11

MNTE CARLO RESULTS . . . . . . . . . . . . . o o . . . . . . 12

PRACTICAL IMPLICATIONS AND CONSIDERATIONS o o . . . . . . 14

SUIKARY AND DISCUSSION . . . o . . . . . . . o . . . . . . . . . . . 19

REFERENCES .. ..... ............... .... .. 22

TABLES AND FIGURES . . . . . . . . . . . . 0 . 23



1. INTRODUCTION

Coaputer simulation, an extremely useful and popular technique in

operations research and management science, is often used to study the
IF

behavior of very complex real-world systems. Unfortunately, simulation

models of complex systems tend to be extremely complicated themselves

because of the meticulous detail ordinarily included in such models. Fur-

thermore, computer codes corresponding to these models are usually extraor-

dinarily large and very long-running.

Often, simulation users cannot readily assimilate the information

contained in large, complex codes because they are overwhelmed by the

vast number of factors (i.e., input variables) and are confused about how

to make an effective analysis of the model without having to perform an

excessive number of costly and time-consuming simulation runs. If the

users could identify the most important factors In some reasonable way,

they could make the model more manageable and their analysis more efficient

by concentrating the major experimental effort on the key factors.

Factor screening methods are statistical methods that attempt to ident-

ify the more important variables. (See, for example, [4), [6). and [8].)

A basic function of these methods is to sort all the factors into two pri-

mary groups. One group consists of the "important" factors which are judged

worthwhile to investigate further, while the other consists of the remaining

"unimportant" factors.

When selecting an appropriate factor screening method, one must pri-

marily consider the number of runs available for screening. In the simu-

lation environment, the number of factors to be screened almost always ex-
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coeds the available number of simulation runs. In statistical experimental

design terminology, this is known as a supersaturated situation. Such a

situation is common in the simulation framework because of the large number

of factors usually under consideration and because of the time and cost of I
~~~the computer runs. y:

Although many strategies have been suggested for designing and con-

ducting screening experiments, few are applicable to the supersaturated case.

Furthermore, for those few that are, there has been no systematic evaluation

and comparison of their performance. In this paper we provide quantitative

information on a supersaturated screening strategy based on random balance

sampling ([1], [l, [14). In addition, we compare this strategy with a

modified strategy based on a combination of random balance and Plackett-

Burman designs [9].
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2. PRELIMINARY DISCUSSION

To provide a common statistical basis to compare and assess screen-
Ing strategies, we must make some assumptions as to the general structure

of a suimlation model. For detecting the factors having major effects it

is usually reasonable to assume

y =6 + Ka-x +e (2.1)

th

~where yi is the value of the response (i.e., output variable) In the It-h=

Isimulation run; K is the total number of factors to be screened, each of

which is at two levels (±1); xij±l depending on the level of the jh

factor during the i h simulation run; is the (linear) effect of the j-h

factor; and the error terms C are independent and normally distributed

random disturbances with zero mean and variance a

In essence, model (2.1) is a first-order Taylor series approximation

to an actual relationship between output and input variables; ordinarily

we would use this approximation over a relatively small region of the factor

space. We will restrict performance evaluation to this model.

Random Balance Sampling

An experiment involving random balance sampling is based on an experi-

mental design that is random. In a two-level (±1) random balance design,

each column of the design matrix consists of N/2 +I's and N/2 -l's where N

(an even number) denotes the total number of runs to be made. The +1's and

-l's in each column are assigned randomly, making all possible combinations

N
of N/2 +Wee and N/2 -l's (there are C/ 2 in all) equally likely, with each
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column receiving an independent randomization.

The principal advantage of random balance (RB) sampling for use in

screening is its flexibility. We can select N independently of K; there

is no mathematical restriction or relationship between N and K as there

is in more traditional experimental designs. A second advantage is the

ease with which we can prepare RB designs for any N and K, an important

consideration vhen K is large.

There are two corresponding disadvantages to RB sampling. The first

of these is that factors are confounded to a random degree. Thus, we can-

not generally control the amount of confounding or interdependence between

factors. Secondly, there Is no specialized or unique technique for analyz-

ing RB designs. The simplest approach is to consider each factor separately

and apply a standard F-test. We should mention, however, that practically

any technique used to analyze data without RB properties can be used to

analyze any (sufficiently small) subset of factors in an RB design. This

Is done by simply ignoring any factor not included in the particular set of

factors being analyzed.

In this paper, we consider a standard F-test applied separately to each

factor as the method of analysis for random balance data. Furthermore, for

simplicity, we conduct each F-test at the same level of significance al" An

n strategy, therefore, is completely determined once we specify N and o

Accordingly, we denote such a strategy by RB(N,a1 ). Moreover, we classify

a factor as important only if it has a significant F-ratio.

Modified Strategy

We now consider a two-stage screening strategy having an RB(N,a1 )

-4-
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first-stage followed by the use of a second-stage Plackett-Burman (PB)

design. We include a given factor in the second-stage PB experiment only

if it has a significant F-ratio in the first-stage RB experiment. In

this combination strategy, we declare important those factors which reach

and have a significant effect in the second stage.

Because PB designs are orthogonal, the second stage separates any

confounding between factors carried over from the RB first stage. Factors

not formally included in the second-stage experiment are held at a

constant level so not to bias any of the second-stage estimates. Further,

unlike RB designs, we can analyze PB designs by the usual analysis of vari-

ance procedures for factorial experiments. We denote this combination

strategy by RP(N,Cil, 2) where t2 is the significance level used in all

second-stage F-tests.

The total number of runs R required by an RP strategy will therefore

be N+'M where M denotes the number of second-stage runs. Although we can

specify N, the number of second-stage runs M will depend on the number of

factors S carried over from the first stage. For reasons of economy and

to avoid design saturation (i.e., no degrees of freedom to estimate experi-

mental error), we employ the smallest PB design that guarantees at least

one error degree of freedom. Since PB designs are only available for num-

bers of runs that are multiples of four, we can obtain a minimum of one and

a maximum of four error degrees of freedom by following this convention.

Accordingly, we can write M mathematically as M-B(S+l) where

B(x)-x+4-x(mod 4). Thus, R-N4M-N+B(S+). We should emphasize, however,

that R is random (since M is). Hence, in an RP(N,,aL 2) strategy we do not

know prior to experimentation the exact number of runs that will be required.

This, of course, is a disadvantage of the RP strategy. However, noting that



B(x)s x x+2.5 we can approximate E(R) by

E(R) ZZN +E(S)+ 3.5 .(2.2)

Since I3(x)-(x +2.5)I1.l5, the appro~imation in (2.2) can differ from

E(R) by at most 1.5 runs. In Section 3 we wili show how the quantities

N~1.and a2 affect the performance of the RB and RP screening strategies.



3. PERFORMANCE ASSESSMENT

In general, the objectives of a factor screening strategy are (1)

to detect asm any important factors as possible, (2) to declare important

as few unimportant factors as possible, and (3) to perform as few runs as

possible. In short, one must consider both how many runs a strategy re-

quires and how accurately it classifies factors. It is difficult, however,

to dichotomize factors as either important or unimportant. From a practical

standpoint, the importance (or unimportance) of a factor will depend on the

magnitude of its effect relative to that of experimental error, a, and that
W-

of the magnitudes of other effects present. Importance, therefore, is es-

sentially a matter of degree. The greater (lesser) the degree of importance,

the larger should be the probability of classifying the factor as important

(unimportant).

In this section we provide formulas that summarize the performance of

the RB(Nal) and RP(N,al,ct2) strategies in terms of the number (or expected

number) of runs a strategy requires and in terms of a strategy's sensitivity

(i.e., power) for declaring a factor important. In order to compare stra-

tegies, we should note that tradeoffs will need to be made. Indeed, ob-

jectives (1) and (2), which deal with factor classification, conflict with - .

objective (3), which deals with testing cost. In many ways the screening

problem is like the testing of a statistical hypothesis in which we want

the sample size to be small but the power (i.e., the probability of reject-

ing a false null hypothesis) to be large. Our intent is to provide the sim-

ulation user with quantitative it .ormation on the tradeoffs involved.

thTo establish some net ti6.., we define R14 -l if the j- factor is de-

clared important by an RB(N,a1) strategy, and we define R-1 if the h
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factor is declared important by an RP(N,tc 2) strategy; otherwise, we let

R -0 and R -0. Except in the simplest cases, P(Rl) and P(R2j=l) are too

complex to be evaluated analytically. In lieu of exact solutions, we develop

approximations to these probabilities. In addition, we present an approxima-
F

tion to the expected value of R, the total number of runs required by an

RP(N,Icz2) strategy. The total number of runs required by an RB(N,aI) stra-

tegy is, of course, N runs.

The RB Strategy

We can write model (2.1) in matrix terms as y-.OI + X0 + C where 1

is an N x 1 vector of +1's, z is an N x 1 vector of responses, c is an N

x 1 vector of error terms, 8 is a K x 1 vector of factor effects, and X is

an N x K design matrix. In a random balance experiment X-[xx 2 ,.o.,x4 ] is

tha stochastic matrix whose j- column, x, is an N x 1 vector consisting of

a random arrangement of N/2 +1's and N/2 -l's. By construction, the K

column vectors of X are independent. We assume that X and c are independent.

The simple least squares estimator of (J1>1) is given by

j (- j s)/2 (3.1)

where-y (y-j) is the average value of the response over the N/2 runs at
ch

the +1 (-1) level of the jth factor. (By simple least squares we mean that

each 8 is estimated igoring all other factors.) In matrix terms

K
0 (x IN (E 8 x x) +. 'cJ/N (3.2)

K
Thus, Ex)+ e)](3.3)

|--



A K
and V( ) (1/N 2 ) Ea 2 V(x 'X) + V( (3.4)

iss1 Zj -1 9I

where in (3.4) we make use of the fact that D'_,X
3jE

are mutually independent for fixed J.
A

It is clear that the exact sampling distribution of ; is intractable.

However, using results we derive in the Appendix, we can easily show

A;E(a j)-=si, (3.5)r

A

7 V(j) - (T2 -8 )/(N-)+ I2 /N, (3.6)

and cov(ai, ) - 8aij/(N - 1) (3.7)
~~2 K 2It

where T -ZB . The simple least squares estimator defined in (3.1) is

therefore an unbiased estimator of 8, although its variance can be seriously

jA
inflated. Moreover, the correlation between and J* is roughly 6

A. corr(Oi, e ai Bj/,010 (3.8) .:

where 0 m,2 T +0 2 8 m " ^

The correlation in (3.8) is a measure of the confounding between

and j. We make the somewhat surprising observation that an increase in N does

not decrease the confounding in an RB design where simple least squares is

used as the estimation method. Furthermore, the degree of confounding between

and is dependent upon a and the magnitudes of the other effects in the

model.

Regarding formal significance testing, we note that a single-factor
A

F-test to test whether is significantly different from zero is equiva-

lent to a simple two-sample t-test between the high (+1) and the low (-1)

thlevels of the j factor. The associated test statistic tj is given by

-9-



t i Bj/[SSE . /N(N - 2)]J (3.9)"i

where SSE is the familiar analysis of variance notation for the error sum

of squares of factor J. Computationally,

SSE 2 (y- ()2 + (y J)2 (3.10)
H L I

where the first (second) summation is taken over the N/2 observations at the

high(low levl oftheth
high (low) level of the J- factor. An alternative, more direct computational

U
formula is given by

SSE Ey N o A2 2 (3.11)

where y is the overall mean of the N responses.

Following normal theory we reject HO:0 -0 in favor of Hi:oj 00 if the

observed value of It I equals or exceeds t(N -2; al/2), the upper lO0(1-al/2)

percentage point of "Student's" t-distribution having (N -2) degrees of free-

do.. Assuming that normal theory is adequate, we can approximate the distri-

bution of t with a noncentral t-distribution having (N-2) degrees of free-

dom and noncentrality parameter

611 -N /.j (3.12)

Therefore,

P(R l )%* (61j) ,(3.13)

where 1(6) -P{IT 2(6)1 >t(N-2;a /2))

and T (6) denotes a random variable having a noncentral t-distribution with
Y

y degrees of freedom and noncentrality parameter 6.

-10-
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The RP Strategy

To evaluate P(R 2 J -1) in an RP(Noac 2 ) strategy, we observe first that

P(R2j 1) -P(Rij -1) P(R 2 j i R ij 1) (3.14)

K
ad note that S - R1 . where as defined previously S denotes the number of

factors tarried over from the RB(N, 1) first stage to the PR second stage.

Next, we define S WS-R and write
j i

K
P(R 2 j l1Rj -1).- sP ( R -  S =s-1lRl - 1)

K-P( - s -11R ij 1i) P(R2j 11 i j 1, -I Rij=1)
8=1

K
=Ze(s 4 -s- i1Ri = i)P(Rj = 1iS =s. Ri -1i).

sl

(3.15)

Using well-known testing properties of PB designs,

P(R2j "ISs,. Rlj .1) 2(8.62j) . (3.16)

where *2 (s.6)-P{IT )(6) I t(d(s); oL2/2)) * (3.17)

c 2 =[B(s+l)J' B.j/o + (3.18)

and d(s)=B(s+l)-(s+l) . (3.19)

The conditional probability in (3.16) represents the probability that the jth

factor tests significant from zero in the PB second stage given that it and

s-i other factors test significant from zero in the RB(N,(I) first stage.

The quantity d(s) represents the number of error degrees of freedom in a PB

design for the study of a factors in B(s +1) runs.

Sunmarizing up to this point, we have

-11-



K
P(1 (S - -11= (3.20)P2j 1 l j~si -"662)P(jI

To complete our evaluation of P(R2j -1), we must somehow approximate the con-

ditional distribution of Sj given Rli -1 and substitute into equation (3.20).
ii7

This, however, is a difficult task; the conditional distribution of S4 given

R al is extremely complex. Nevertheless. the conditional distribution of
ii

S given R =1 might be reasonably approximated, for moderately sized N. as

the convolution of (K -1) independent Bernoulli random variables having suc-

cess probabilities {go, ( 6 :m-l,2,...,J - lj + l,...,KI. Alternatively, fol-

lowing Feller (3], for large N and moderate values of K
-''1 £V* (6.,*),~

we might reasonably approximate the conditional distribution of S given

Rj-1 with a Poisson distribution having mean Xj. The Poisson approximation

approach is generally much easier to apply than the Bernoulli convolution ap-

proach, particularly if K is large.

Regarding the expected number of runs required by an RP(N,I,,a2) stra-

tegy, we observe that

K K
E(S) E £ E(R14) tEl(614) . (3.21)

j-l i-i--

Whereupon, Introducing (3.21) into (2.2), we obtain

K
E(R) N+3.5+ £E1(6,4) . (3.22)

Monte Carlo Results

As a check on the various approximations presented in this section, we

conducted two Monte Carlo case studies, the results of which are suumarized

-12-
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in Tables 1 and 2. As can be seen from these tables, the results are ex-

tremely encourc...ag and suggest that the approximations of P(R -1),

P(R 2 j l), and E(R) given in (3.13), (3.20), and (3.22), respectively, are

quite reasonable for practical purposes. It is the authors' experience [52

that even for relatively small values of N these approximations are fairly

reasonable.

As can be noted from Table 1, the approximations to P(R2J -n1) based

on the Bernoulli convolution and Poisson distribution approaches yield

essentially the same results. Because of this agreement and the complexity

of the calculations associated with the Bernoulli convolution approach for

the second case study, we used only the Poisson distribution approach in

the second example to evaluate P(R 2 j-1) . In this case, nonzero factor

effects vary in magnitude, ranging between a and 6o in absolute magnitude.

Moreover, as might be expected in an actual screening situation, the majority

of the effects are relatively small.

-13-
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4. PRACTICAL IMPLICATIONS AND CONSIDERATIONS

p.7

In this section we discuss a number of practical considerations and

implications regarding the RB and RP screening strategies. In addition,

using a hypothetical situation, we illustrate numerically a direct appli-

cation of the results of Section 3.

We note, first, that an increase in N or a increases the power of an

RB(N,al) strategy. Of course, an increase in N also increases experimental

costs by requiring more screening runs, and an increase in a increases

correspondingly the probability of declaring important a negligible factor.

We should further point out that applying an F-test separately to each

factor is not necessarily the most powerful method of analyzing data from

a random balance experiment. Presumably, more sophisticated statistical

techniques (such as least squares stepwise or stagewise methods) that an-

alyze more than one factor at a time would provide greater power. However,

in some applications such methods say not be computationally feasible, par-

ticularly if K is exceedingly large, and can be severely limited if N is

very small relative to K. The individual F-test approach is generally a

relatively quick and easy testing procedure. Moreover, the use of

this approach admits to a tractable quantitative assessment, whereas

more sophisticated analytical techniques lead to an intractable problem.

In any event, we suspect that the results of Section 3 can be regarded as

a lower bound for the discriminatory power of alternative, more sophisti-

cated RB analysis and testing procedures.

To increase the power of an RP(N,%,a 2) strategy, adjustments can be
2p

made In the RB(Nga) first stage, the PB second stage, or both. Although

an increase In ai does not affect the number of runs in an RB(N,ca) strategy,

-14-
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this Is not true for an RP(N,ol,a2) strategy. In this case, an increase

In a will usually increase the number of second-stage runs and hence the

total number of runs.

To ncrease the power of a PB experiment, one can employ a larger PB

design or a larger level of significance a2 In the analysis. The power of

the second-stage analysis might also be increased if som factor effects

could be reasonably assumed to be negligible based on.an examination of the data.

In such cases, one could pool the sun of squares associated with these factors

into the error sum of squares, thus obtaining a pooled error estimate having

more degrees of freedom for error than the unpooled eatimate. If the pooled

effects are indeed negligible, the increased error degrees of freedom will

translate into greater power. Pooling is especially appealing when there

is only one degree of freedom for error. Caution, however, should be exer-

cised since pooling tends to diminish the denominator expected man square

of the F-ratio.

To help determine which effects, if any. one might reasonably combine

into a pooled error estimate, estimated effects can be plotted on normal

probability paper. In this technique (e.g., Daniel [2]). negligible effects

should fall approximately along a straight line, while large effects should

tend to fall far from the line. Because the interpretation of the results

relies heavily on subjective judgement, a quantitative assessment of the

writs of normal plotting is not possible, however.

In Section 2 we noted one advantage of an RB strategy compared with

an RP strategy. This was that for an RB strategy, unlike for an RP strategy,

the number of required screening runs is fixed rather than random. Other

than making this simple observation it is difficult to make any further

general statements or recomendations regarding the usage of these two

-15-



strategies relative to each other without further study. Toward this end,

we have conducted a study of this problem under some simplified assumptions.

We wish to consider the case in which of the K factors to be screened

'k have the same absolute effect, say A> 0, and the remaining K-k are Inactive,

that is, have a zero effect. In this case, we can identify three basic

measures of performance: c, a, and ', where we define

c - (total expected number of screening runs) /K., (4.1)

a- P (declare important an inactive factor} , (4.2)

and 4#-P (declare important an active factor) . (4.3)

By active, we mean one of the k factors having an absolute effect equal A.

For future reference, we define p -k/K.

It is clear that for an RB(N,a1) strategy c-N/cta,, and * can be

determined from (3.13). For an RP(N,a,ca2) strategy c -E(R)/K, =ape2,

and * and E(R) canbe determined from (3.20) and (3.22), respectively. We

note that specifying c and a determines uniquely the corresponding R stra-

tegy, namely, RB(cK,a) where cK is assumed to be an even integer. With

this in mind, we developed a computer search routine which for any given

RB(ck,a) strategy attempts to find an RP strategy having the same c and

a, but greater power.

Using our search routine we examined the following twelve cases:

K-100, 200, 500; p-. 0 5 , .15; and A/c-2, 8. Furthermore, to maintain

a supersaturated situation, we considered .1 <c <.9

Figure 1 presents graphically the results of the investigation. Each

curve in this figure represents one of the six combinations of K and p

studied. For points (ca) above each curve, no RP(N,alci2) strategy could

improve on the performance of the corresponding RB(cK,a) strategy* For

points (c,a) below each curve, there exists some RP(N,aa 2) strategy that

-16-



outperforms the corresponding RB(cK,a) strategy. Each curve defines the

boundaries of what ve refer to as "zones of inadmisibility." As can be

seen from Figure 1, the a level defining each boundary curve increases as

sample size Increases.

Furthermore, for the cases examined, we found that r- A a had virtually

no effect on the results. We can offer two reasons for this. First, In an

RB experient where all nonzero effects are of equal absolute magnitude, the

noncentrality paramter, 61, associated with these factors is given by

612 -N/(k - I + r -2), per (3.12). if r is large relative to (k- 1)"-  then

261 t N/(k- 1). Second, In a PS expertant the noncentrality parmeter as-

sociated with factors of equal absolute effects is given by 62 w where

M is the number of runs made, see (3.18). For the cases we considered, N

is generally large enough that whether r -2 or r -8 makes little difference

in any resulting power calculation.

In sum, the results indicate that neither strategy dominates the other.

Moreover, the findings suggest that an RP strategy should be considered in

those situations where it Is Important that a be mIntained at a low level.

Finally, to illustrate a direct application of the results of Section 3,

consider a simulation model consisting of K- 200 factors and suppose we are

Interested in employing an RI(N,a1 ) screening strategy. The paramters N

and a1 are at our disposal, of course. Suppose further that we anticipate

the average absolute effect to be roughly 0.5a with a standard deviation of

l.5a . We imglne that the absolute magnltudes of the effects have a rela-

tive frequency distribution similar to that illustrated in Figure 2.

It Is convenient to deflas y- I j/a, the ratio of the j th absolute

effect to a. In terms of the yj we can write the square of the noncentrality

paramter associated with the jth effect, see (3.12), as

-17-



2 K 2 2
6. 2 Y A1 Z y+l-yj)  .(14.4)

From our above assumptions, Ey1/200 -.5 and E(y -.5) /200" (1.5) from

2 2which it follows that Eyi -200(2.25+.5 -500. Therefore,

a -1j2 1Y /(501-yj) . (4.5)

" 2

Of course the larger is 61J , the greater is the power of the testing pro-

cedure, see (3.13). Further, it is clear that if Ii < Is. 1+ then
2 2

To make any power calculations, we need to specify a value or values of

*Nj For the sake of illustration, suppose we wish to consider the power for

an effect of magnitude 3a, that is, consider a yj M3. Accordingly, introduc-

ing yj =3 into (4.5), we have 61j -9N/492 Therefor*, for a given N a

we can-compute the power.

Table 3 presents the power corresponding to an effect of magnitude 3a

for a mnber of RB(N,m1) strategies. (From a previous remark, we know that

power will be greater for any effect greater than 3a in absolute magnitude.)

We can use Table 3 for guidance in using and selecting a suitable RB(N,z 1 )

strategy. For example, if we decide to control a at .15 and desire our power

to be at least 0.50 for effects greater than or equal 3a in absolute magnitude,

then N, by interpolation, must be at least 118 runs. If an N this size is not

feasible, then additional tradeoffs must be made or we should Investigate the

use of an alternative screening plan.

The use of an RP(NQ 1l,12) strategy could be investigated Ina similar

manner, again utilizing the results of Section 3. Here, of course, the ef-

fect of three parameters, not two, would have to be considered.

-16-
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5. SU 4ARY AND DISCUSSION

In this paper we have focused on the problem of factor screening (i.e..

the identification of the important variables) in computer simulation. Spe-

cifically, we have discussed and evaluated two factor screening strategies,

both of which are based on random balance sampling. These two strategies

are intended for use in supersaturated situations, that is, where the

number of variables to be screened exceeds the number of runs available.

This type of situation frequently exists in the simulation environment, par-

ticularly in the study of large, complex models.

Generally, in any screening application we must consider both the ac-

curacy of factor identification and the number of runs required by the stra-

tegy we employ. For the two strategies we have considered, we have developed

approximations to (1) the probability that a given factor is declared im-

portant and (2) the total number (or expected number) of required runs.

These approximations compared very favorably with corresponding Monte Carlo

estimates. More importantly, the approximations provide the user with

quantitative information on the tradeoffs involved in particular screening

applications. Accordingly, the results of this paper can be used as a

practical guide in making objective decisions about the use of the two stra-

tegies we have studied.

Although other supersaturated screening strategies, such as group screen-

ing (17). [111), have been suggested, there has been little or no systematic

evaluation of the performance of these methods. It remains to be seen, there-

fore, how the performance of these methods compare with the performance of the

two strategies examined here.

-19-
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APPEDIX

If I Is a discrete random variable having probability distribution

P1(-h)- h-O, 1, 2, ... , r (A.1)

otherwise.

where r Is any positive Integer. we write 1~ H(r). The class of distri-

butions defined in (A.l) is a symestric subfamily of the hypergeometric

family of distributions. If 8- 1(r), then 3(B)- r/2 and V(S)- (r/2)2 /(2r-1).
4.h

W. define. ,-(A +D/2 where is the IM column vector of an RB de-

sign matrix and note that, for iJj. f4 f- "(N/2). It follows that, for

OJIj, (E4OEL+N)/4- (N2) . Bence. for #10J. 3('L)-O and
vz %). /(N- 1).

In regard to the distribution of E 'C. we observe that

N(012 ) since s '- N. Because the conditional distribution of

given i so the san for any realization of Ej, the result is therefore

true unconditionally. Thus, -o ed V% Is)- and2

To find the covariance between it and Ii. for I ,j, we have

iovi.) -El )  - -iLj  (A.2)

K
V write Pie Y+ A where mUx 'c and Y.-B x' x • Thus,

gtlgig A ItlOfiyj) + R (Y JLX ) + a-(yj A ) + I (NLj) • (A. 3)

It is easy to show that E(yixj) -E(y A ) E(Aij) -0, so that

Cov(1i.Bj) m 3(YYJ)/ 2 _ - 1  (A.4)

-20-



Expanding 2(y 1yj), ws havej

K K

It Is not difficult to verify that, for i10j, E(-Xi-' - )iszr uls

r-i, q-j or r-J, q-i, When r-i and qmj, ZC*i'x x x;) 3 [A 1 1  _N2

when r-j and qui, E x' x x- N(')m2/(t-1)J

Substitution Into (A.5) yields

E (YiLYj) -jO N3BB -/I1). (A.6)

Finally, Introducing (A.6) into (A.4), we get the desired result

Cov (Ai 1J)m OB!I (N-1) .(A.7)

-21-
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